Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The action of mapping classes on nilpotent covers of surfaces (1110.3743v1)

Published 17 Oct 2011 in math.GT and math.GR

Abstract: Let $\Sigma$ be a surface whose interior admits a hyperbolic structure of finite volume. In this paper, we show that any infinite order mapping class acts with infinite order on the homology of some universal $k$--step nilpotent cover of $\Sigma$. We show that a Torelli mapping class either acts with infinite order on the homology of a finite abelian cover, or the suspension of the mapping class is a 3--manifold whose fundamental group has positive homology gradient. In the latter case, it follows that the suspended 3--manifold has a large fundamental group. It follows that every element of the Magnus kernel suspends to give a 3--manifold with a large fundamental group.

Summary

We haven't generated a summary for this paper yet.