Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds (1110.3718v2)

Published 17 Oct 2011 in math.GT and math.AT

Abstract: For an oriented finite volume hyperbolic 3-manifold M with a fixed spin structure \eta, we consider a sequence of invariants {\tau_n(M; \eta)}. Roughly speaking, {\tau_n(M; \eta)} is the Reidemeister torsion of M with respect to the representation given by the composition of the lift of the holonomy representation defined by \eta, and the n-dimensional, irreducible, complex representation of SL(2,C). In the present work, we focus on two aspects of this invariant: its asymptotic behavior and its relationship with the complex-length spectrum of the manifold. Concerning the former, we prove that for suitable spin structures, log(\tau_n(M; \eta)) grows as -n2 Vol(M)/4\pi, extending thus the result obtained by W. Mueller for the compact case. Concerning the latter, we prove that the sequence {\tau_n(M; \eta)} determines the complex-length spectrum of the manifold up to complex conjugation.

Summary

We haven't generated a summary for this paper yet.