Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hamming Compressed Sensing (1110.0073v2)

Published 1 Oct 2011 in cs.IT and math.IT

Abstract: Compressed sensing (CS) and 1-bit CS cannot directly recover quantized signals and require time consuming recovery. In this paper, we introduce \textit{Hamming compressed sensing} (HCS) that directly recovers a k-bit quantized signal of dimensional $n$ from its 1-bit measurements via invoking $n$ times of Kullback-Leibler divergence based nearest neighbor search. Compared with CS and 1-bit CS, HCS allows the signal to be dense, takes considerably less (linear) recovery time and requires substantially less measurements ($\mathcal O(\log n)$). Moreover, HCS recovery can accelerate the subsequent 1-bit CS dequantizer. We study a quantized recovery error bound of HCS for general signals and "HCS+dequantizer" recovery error bound for sparse signals. Extensive numerical simulations verify the appealing accuracy, robustness, efficiency and consistency of HCS.

Citations (4)

Summary

We haven't generated a summary for this paper yet.