Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data processing inequalities based on a certain structured class of information measures with application to estimation theory (1109.5351v1)

Published 25 Sep 2011 in cs.IT and math.IT

Abstract: We study data processing inequalities that are derived from a certain class of generalized information measures, where a series of convex functions and multiplicative likelihood ratios are nested alternately. While these information measures can be viewed as a special case of the most general Zakai-Ziv generalized information measure, this special nested structure calls for attention and motivates our study. Specifically, a certain choice of the convex functions leads to an information measure that extends the notion of the Bhattacharyya distance (or the Chernoff divergence): While the ordinary Bhattacharyya distance is based on the (weighted) geometric mean of two replicas of the channel's conditional distribution, the more general information measure allows an arbitrary number of such replicas. We apply the data processing inequality induced by this information measure to a detailed study of lower bounds of parameter estimation under additive white Gaussian noise (AWGN) and show that in certain cases, tighter bounds can be obtained by using more than two replicas. While the resulting lower bound may not compete favorably with the best bounds available for the ordinary AWGN channel, the advantage of the new lower bound, relative to the other bounds, becomes significant in the presence of channel uncertainty, like unknown fading. This different behavior in the presence of channel uncertainty is explained by the convexity property of the information measure.

Citations (13)

Summary

We haven't generated a summary for this paper yet.