Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Algorithms for Optimal Power Flow Problem (1109.5229v1)

Published 24 Sep 2011 in math.OC and cs.SY

Abstract: Optimal power flow (OPF) is an important problem for power generation and it is in general non-convex. With the employment of renewable energy, it will be desirable if OPF can be solved very efficiently so its solution can be used in real time. With some special network structure, e.g. trees, the problem has been shown to have a zero duality gap and the convex dual problem yields the optimal solution. In this paper, we propose a primal and a dual algorithm to coordinate the smaller subproblems decomposed from the convexified OPF. We can arrange the subproblems to be solved sequentially and cumulatively in a central node or solved in parallel in distributed nodes. We test the algorithms on IEEE radial distribution test feeders, some random tree-structured networks, and the IEEE transmission system benchmarks. Simulation results show that the computation time can be improved dramatically with our algorithms over the centralized approach of solving the problem without decomposition, especially in tree-structured problems. The computation time grows linearly with the problem size with the cumulative approach while the distributed one can have size-independent computation time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Albert Y. S. Lam (34 papers)
  2. Baosen Zhang (104 papers)
  3. David Tse (96 papers)
Citations (148)

Summary

We haven't generated a summary for this paper yet.