Suppression effect on explosive percolations (1109.4803v2)
Abstract: When a group of people unknown to each other meet and familiarize among themselves, over time they form a community on a macroscopic scale. This phenomenon can be understood in the context of percolation transition (PT) of networks, which takes place continuously in the classical random graph model. Recently, a modified model was introduced in which the formation of the community was suppressed. Then the PT occurs explosively at a delayed transition time. Whether the explosive PT is indeed discontinuous or continuous becomes controversial. Here we show that type of PT depends on a detailed dynamic rule. Thus, when the dynamic rule is designed to suppress the growth of overall clusters, then the explosive PT could be discontinuous.