Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A O(1/eps^2)^n Time Sieving Algorithm for Approximate Integer Programming (1109.2477v2)

Published 12 Sep 2011 in cs.DS

Abstract: The Integer Programming Problem (IP) for a polytope P \subseteq Rn is to find an integer point in P or decide that P is integer free. We give an algorithm for an approximate version of this problem, which correctly decides whether P contains an integer point or whether a (1+\eps) scaling of P around its barycenter is integer free in time O(1/\eps2)n. We reduce this approximate IP question to an approximate Closest Vector Problem (CVP) in a "near-symmetric" semi-norm, which we solve via a sieving technique first developed by Ajtai, Kumar, and Sivakumar (STOC 2001). Our main technical contribution is an extension of the AKS sieving technique which works for any near-symmetric semi-norm. Our results also extend to general convex bodies and lattices.

Citations (6)

Summary

We haven't generated a summary for this paper yet.