Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Devnagari document segmentation using histogram approach (1109.1247v1)

Published 6 Sep 2011 in cs.CV

Abstract: Document segmentation is one of the critical phases in machine recognition of any language. Correct segmentation of individual symbols decides the accuracy of character recognition technique. It is used to decompose image of a sequence of characters into sub images of individual symbols by segmenting lines and words. Devnagari is the most popular script in India. It is used for writing Hindi, Marathi, Sanskrit and Nepali languages. Moreover, Hindi is the third most popular language in the world. Devnagari documents consist of vowels, consonants and various modifiers. Hence proper segmentation of Devnagari word is challenging. A simple histogram based approach to segment Devnagari documents is proposed in this paper. Various challenges in segmentation of Devnagari script are also discussed.

Citations (51)

Summary

We haven't generated a summary for this paper yet.