Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach (1109.0738v2)

Published 4 Sep 2011 in q-fin.CP, math.SP, and q-fin.PR

Abstract: Using tools from spectral analysis, singular and regular perturbation theory, we develop a systematic method for analytically computing the approximate price of a derivative-asset. The payoff of the derivative-asset may be path-dependent. Additionally, the process underlying the derivative may exhibit killing (i.e. jump to default) as well as combined local/nonlocal stochastic volatility. The nonlocal component of volatility is multiscale, in the sense that it is driven by one fast-varying and one slow-varying factor. The flexibility of our modeling framework is contrasted by the simplicity of our method. We reduce the derivative pricing problem to that of solving a single eigenvalue equation. Once the eigenvalue equation is solved, the approximate price of a derivative can be calculated formulaically. To illustrate our method, we calculate the approximate price of three derivative-assets: a vanilla option on a defaultable stock, a path-dependent option on a non-defaultable stock, and a bond in a short-rate model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.