Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral properties of operators using tridiagonalisation (1108.5716v2)

Published 29 Aug 2011 in math.CA and math.SP

Abstract: A general scheme for tridiagonalising differential, difference or q-difference operators using orthogonal polynomials is described. From the tridiagonal form the spectral decomposition can be described in terms of the orthogonality measure of generally different orthogonal polynomials. Three examples are worked out: (1) related to Jacobi and Wilson polynomials for a second order differential operator, (2) related to little q-Jacobi polynomials and Askey-Wilson polynomials for a bounded second order q-difference operator, (3) related to little q-Jacobi polynomials for an unbounded second order q-difference operator. In case (1) a link with the Jacobi function transform is established, for which we give a q-analogue using example (2).

Summary

We haven't generated a summary for this paper yet.