Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponentially Localized Wannier Functions in Periodic Zero Flux Magnetic Fields (1108.5651v2)

Published 29 Aug 2011 in math-ph, cond-mat.other, and math.MP

Abstract: In this work, we investigate conditions which ensure the existence of an exponentially localized Wannier basis for a given periodic hamiltonian. We extend previous results in [Pan07] to include periodic zero flux magnetic fields which is the setting also investigated in [Kuc09]. The new notion of magnetic symmetry plays a crucial role; to a large class of symmetries for a non-magnetic system, one can associate "magnetic" symmetries of the related magnetic system. Observing that the existence of an exponentially localized Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a rank m hermitian vector bundle over the Brillouin zone, we prove that magnetic time-reversal symmetry is sufficient to ensure the triviality of the Bloch bundle in spatial dimension d=1,2,3. For d=4, an exponentially localized Wannier basis exists provided that the trace per unit volume of a suitable function of the Fermi projection vanishes. For d>4 and d \leq 2m (stable rank regime) only the exponential localization of a subset of Wannier functions is shown; this improves part of the analysis of [Kuc09]. Finally, for d>4 and d>2m (unstable rank regime) we show that the mere analysis of Chern classes does not suffice in order to prove trivility and thus exponential localization.

Summary

We haven't generated a summary for this paper yet.