Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Hausdorff dimension and level sets of generic continuous functions on fractals (1108.5578v2)

Published 29 Aug 2011 in math.CA and math.GN

Abstract: In an earlier paper (arxiv:1108.4292) we introduced a new concept of dimension for metric spaces, the so called topological Hausdorff dimension. For a compact metric space $K$ let $\dim_{H}K$ and $\dim_{tH} K$ denote its Hausdorff and topological Hausdorff dimension, respectively. We proved that this new dimension describes the Hausdorff dimension of the level sets of the generic continuous function on $K$, namely $\sup{\dim_{H}f{-1}(y) : y \in \mathbb{R}} = \dim_{tH} K - 1$ for the generic $f \in C(K)$, provided that $K$ is not totally disconnected, otherwise every non-empty level set is a singleton. We also proved that if $K$ is not totally disconnected and sufficiently homogeneous then $\dim_{H}f{-1}(y) = \dim_{tH} K - 1$ for the generic $f \in C(K)$ and the generic $y \in f(K)$. The most important goal of this paper is to make these theorems more precise. As for the first result, we prove that the supremum is actually attained on the left hand side of the first equation above, and also show that there may only be a unique level set of maximal Hausdorff dimension. As for the second result, we characterize those compact metric spaces for which for the generic $f\in C(K)$ and the generic $y\in f(K)$ we have $\dim_{H} f{-1}(y)=\dim_{tH}K-1$. We also generalize a result of B. Kirchheim by showing that if $K$ is self-similar then for the generic $f\in C(K)$ for every $y\in \inter f(K)$ we have $\dim_{H} f{-1}(y)=\dim_{tH}K-1$. Finally, we prove that the graph of the generic $f\in C(K)$ has the same Hausdorff and topological Hausdorff dimension as $K$.

Summary

We haven't generated a summary for this paper yet.