Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The simple non-Lie Malcev algebra as a Lie-Yamaguti algebra (1108.4202v1)

Published 21 Aug 2011 in math.RA

Abstract: The simple 7-dimensional Malcev algebra $M$ is isomorphic to the irreducible $\mathfrak{sl}(2,\mathbb{C})$-module V(6) with binary product $[x,y] = \alpha(x \wedge y)$ defined by the $\mathfrak{sl}(2,\mathbb{C})$-module morphism $\alpha\colon \Lambda2 V(6) \to V(6)$. Combining this with the ternary product $(x,y,z) = \beta(x \wedge y) \cdot z$ defined by the $\mathfrak{sl}(2,\mathbb{C})$-module morphism $\beta\colon \Lambda2 V(6) \to V(2) \approx \s$ gives $M$ the structure of a generalized Lie triple system, or Lie-Yamaguti algebra. We use computer algebra to determine the polynomial identities of low degree satisfied by this binary-ternary structure.

Summary

We haven't generated a summary for this paper yet.