Bright solitons from defocusing nonlinearities (1108.3673v1)
Abstract: We report that defocusing cubic media with spatially inhomogeneous nonlinearity, whose strength increases rapidly enough toward the periphery, can support stable bright localized modes. Such nonlinearity landscapes give rise to a variety of stable solitons in all three dimensions, including 1D fundamental and multihump states, 2D vortex solitons with arbitrarily high topological charges, and fundamental solitons in 3D. Solitons maintain their coherence in the state of motion, oscillating in the nonlinear potential as robust quasi-particles and colliding elastically. In addition to numerically found soliton families, particular solutions are found in an exact analytical form, and accurate approximations are developed for the entire families, including moving solitons.