Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of limiting conditional distributions for the heavy tailed long memory stochastic volatility process (1108.3136v1)

Published 16 Aug 2011 in math.ST and stat.TH

Abstract: We consider Stochastic Volatility processes with heavy tails and possible long memory in volatility. We study the limiting conditional distribution of future events given that some present or past event was extreme (i.e. above a level which tends to infinity). Even though extremes of stochastic volatility processes are asymptotically independent (in the sense of extreme value theory), these limiting conditional distributions differ from the i.i.d. case. We introduce estimators of these limiting conditional distributions and study their asymptotic properties. If volatility has long memory, then the rate of convergence and the limiting distribution of the centered estimators can depend on the long memory parameter (Hurst index).

Summary

We haven't generated a summary for this paper yet.