Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

A multiple-beam CLEAN for imaging intra-day variable radio sources (1107.4282v1)

Published 21 Jul 2011 in astro-ph.IM

Abstract: The CLEAN algorithm, widely used in radio interferometry for the deconvolution of radio images, performs well only if the raw radio image (dirty image) is, to good approximation, a simple convolution between the instrumental point-spread function (dirty beam) and the true distribution of emission across the sky. An important case in which this approximation breaks down is during frequency synthesis if the observing bandwidth is wide enough for variations in the spectrum of the sky to become significant. The convolution assumption also breaks down, in any situation but snapshot observations, if sources in the field vary significantly in flux density over the duration of the observation. Such time-variation can even be instrumental in nature, for example due to jitter or rotation of the primary beam pattern on the sky during an observation. An algorithm already exists for dealing with the spectral variation encountered in wide-band frequency synthesis interferometry. This algorithm is an extension of CLEAN in which, at each iteration, a set of N `dirty beams' are fitted and subtracted in parallel, instead of just a single dirty beam as in standard CLEAN. In the wide-band algorithm the beams are obtained by expanding a nominal source spectrum in a Taylor series, each term of the series generating one of the beams. In the present paper this algorithm is extended to images which contain sources which vary over both frequency and time. Different expansion schemes (or bases) on the time and frequency axes are compared, and issues such as Gibbs ringing and non-orthogonality are discussed. It is shown that practical considerations make it often desirable to orthogonalize the set of beams before commencing the cleaning. This is easily accomplished via a Gram-Schmidt technique.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.