Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
33 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
479 tokens/sec
Kimi K2 via Groq Premium
160 tokens/sec
2000 character limit reached

Alternating projections on non-tangential manifolds (1107.4055v1)

Published 8 Jul 2011 in math.NA

Abstract: We consider sequences $(B_k){k=0}\infty$ of points obtained by projecting back and forth between two manifolds $\M_1$ and $\M_2$, and give conditions guaranteeing that the sequence converge to a limit $B\infty\in\M_1\cap\M_2$. Our motivation is the study of algorithms based on finding the limit of such sequences, which have proven useful in a number of areas. The intersection is typically a set with desirable properties, but for which there is no efficient method of finding the closest point $B_{opt}$ in $\M_1\cap\M_2$. We prove not only that the sequence of alternating projections converges, but that the limit point is fairly close to $B_{opt}$, in a manner relative to the distance $|B_0-B_{opt}|$, thereby significantly improving earlier results in the field. A concrete example with applications to frequency estimation of signals is also presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.