Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fitting a Model to Data in Loss Tomography (1107.3879v1)

Published 20 Jul 2011 in cs.NI

Abstract: Loss tomography has received considerable attention in recent years and a number of estimators have been proposed. Although most of the estimators claim to be the maximum likelihood estimators, the claim is only partially true since the maximum likelihood estimate can be obtained at most for a class of data sets. Unfortunately, few people are aware of this restriction that leads to a misconception that an estimator is applicable to all data sets as far as it returns a unique solution. To correct this, we in this paper point out the risk of this misconception and illustrate the inconsistency between data and model in the most influential estimators. To ensure the model used in estimation consistent with the data collected from an experiment, the data sets used in estimation are divided into 4 classes according to the characteristics of observations. Based on the classification, the validity of an estimator is defined and the validity of the most influential estimators is evaluated. In addition, a number of estimators are proposed, one for a class of data sets that have been overlooked. Further, a general estimator is proposed that is applicable to all data classes. The discussion starts from the tree topology and end at the general topology.

Citations (2)

Summary

We haven't generated a summary for this paper yet.