Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pull-back of currents by meromorphic maps (1107.1743v2)

Published 8 Jul 2011 in math.DS and math.CV

Abstract: Let $X$ and $Y$ be compact K\"ahler manifolds, and let $f:X\rightarrow Y$ be a dominant meromorphic map. Base upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator $f{\sharp}$ for currents of bidegrees $(p,p)$ of finite order on $Y$ (and thus for {\it any} current, since $Y$ is compact). This operator has good properties as may be expected. Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can be readily extended to the case of meromorphic correspondences. We give an example of a meromorphic map $f$ and two nonzero positive closed currents $T_1,T_2$ for which $f{\sharp}(T_1)=-T_2$. We use Siu's decomposition to help further study on pulling back positive closed currents. Many applications on finding invariant currents are given.

Summary

We haven't generated a summary for this paper yet.