Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Lasso, correlated design, and improved oracle inequalities (1107.0189v1)

Published 1 Jul 2011 in stat.ME

Abstract: We study high-dimensional linear models and the $\ell_1$-penalized least squares estimator, also known as the Lasso estimator. In literature, oracle inequalities have been derived under restricted eigenvalue or compatibility conditions. In this paper, we complement this with entropy conditions which allow one to improve the dual norm bound, and demonstrate how this leads to new oracle inequalities. The new oracle inequalities show that a smaller choice for the tuning parameter and a trade-off between $\ell_1$-norms and small compatibility constants are possible. This implies, in particular for correlated design, improved bounds for the prediction error of the Lasso estimator as compared to the methods based on restricted eigenvalue or compatibility conditions only.

Summary

We haven't generated a summary for this paper yet.