Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparison of Lex Bounds for Multiset Variables in Constraint Programming (1106.5890v1)

Published 29 Jun 2011 in cs.AI

Abstract: Set and multiset variables in constraint programming have typically been represented using subset bounds. However, this is a weak representation that neglects potentially useful information about a set such as its cardinality. For set variables, the length-lex (LL) representation successfully provides information about the length (cardinality) and position in the lexicographic ordering. For multiset variables, where elements can be repeated, we consider richer representations that take into account additional information. We study eight different representations in which we maintain bounds according to one of the eight different orderings: length-(co)lex (LL/LC), variety-(co)lex (VL/VC), length-variety-(co)lex (LVL/LVC), and variety-length-(co)lex (VLL/VLC) orderings. These representations integrate together information about the cardinality, variety (number of distinct elements in the multiset), and position in some total ordering. Theoretical and empirical comparisons of expressiveness and compactness of the eight representations suggest that length-variety-(co)lex (LVL/LVC) and variety-length-(co)lex (VLL/VLC) usually give tighter bounds after constraint propagation. We implement the eight representations and evaluate them against the subset bounds representation with cardinality and variety reasoning. Results demonstrate that they offer significantly better pruning and runtime.

Citations (2)

Summary

We haven't generated a summary for this paper yet.