2000 character limit reached
Real algebraic geometry for matrices over commutative rings (1106.5239v2)
Published 26 Jun 2011 in math.AG
Abstract: We define and study preorderings and orderings on rings of the form $M_n(R)$ where $R$ is a commutative unital ring. We extend the Artin-Lang theorem and Krivine-Stengle Stellens\"atze (both abstract and geometric) from $R$ to $M_n(R)$. While the orderings of $M_n(R)$ are in one-to-one correspondence with the orderings of $R$, this is not true for preorderings. Therefore, our theory is not Morita equivalent to the classical real algebraic geometry.