Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cayley's hyperdeterminant: a combinatorial approach via representation theory (1106.5068v1)

Published 24 Jun 2011 in math.RT

Abstract: Cayley's hyperdeterminant is a homogeneous polynomial of degree 4 in the 8 entries of a 2 x 2 x 2 array. It is the simplest (nonconstant) polynomial which is invariant under changes of basis in three directions. We use elementary facts about representations of the 3-dimensional simple Lie algebra sl_2(C) to reduce the problem of finding the invariant polynomials for a 2 x 2 x 2 array to a combinatorial problem on the enumeration of 2 x 2 x 2 arrays with non-negative integer entries. We then apply results from linear algebra to obtain a new proof that Cayley's hyperdeterminant generates all the invariants. In the last section we show how this approach can be applied to general multidimensional arrays.

Summary

We haven't generated a summary for this paper yet.