Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projected Richardson varieties and affine Schubert varieties (1106.2586v3)

Published 14 Jun 2011 in math.AG and math.CO

Abstract: Let $G$ be a complex quasi-simple algebraic group and $G/P$ be a partial flag variety. The projections of Richardson varieties from the full flag variety form a stratification of $G/P$. We show that the closure partial order of projected Richardson varieties agrees with that of a subset of Schubert varieties in the affine flag variety of $G$. Furthermore, we compare the torus-equivariant cohomology and $K$-theory classes of these two stratifications by pushing or pulling these classes to the affine Grassmannian. Our work generalizes results of Knutson, Lam, and Speyer for the Grassmannian of type $A$.

Summary

We haven't generated a summary for this paper yet.