2000 character limit reached
Investigating the Spectral Geometry of a Soft Wall (1106.1162v2)
Published 6 Jun 2011 in quant-ph, hep-th, math-ph, and math.MP
Abstract: The idealized theory of quantum vacuum energy density is a beautiful application of the spectral theory of differential operators with boundary conditions, but its conclusions are physically unacceptable. A more plausible model of a reflecting boundary that stays within linear spectral theory confines the waves by a steeply rising potential function, which can be taken as a power of one coordinate, z\alpha. We report investigations of this model with considerable student involvement. An exact analytical solution with some numerics for \alpha=1 and an asymptotic (semiclassical) analysis of a related problem for \alpha=2 are presented.