Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Stochastic Power Control in Ad-hoc Networks: A Nonconvex Case (1106.0736v1)

Published 3 Jun 2011 in cs.DC

Abstract: Utility-based power allocation in wireless ad-hoc networks is inherently nonconvex because of the global coupling induced by the co-channel interference. To tackle this challenge, we first show that the globally optimal point lies on the boundary of the feasible region, which is utilized as a basis to transform the utility maximization problem into an equivalent max-min problem with more structure. By using extended duality theory, penalty multipliers are introduced for penalizing the constraint violations, and the minimum weighted utility maximization problem is then decomposed into subproblems for individual users to devise a distributed stochastic power control algorithm, where each user stochastically adjusts its target utility to improve the total utility by simulated annealing. The proposed distributed power control algorithm can guarantee global optimality at the cost of slow convergence due to simulated annealing involved in the global optimization. The geometric cooling scheme and suitable penalty parameters are used to improve the convergence rate. Next, by integrating the stochastic power control approach with the back-pressure algorithm, we develop a joint scheduling and power allocation policy to stabilize the queueing systems. Finally, we generalize the above distributed power control algorithms to multicast communications, and show their global optimality for multicast traffic.

Citations (6)

Summary

We haven't generated a summary for this paper yet.