Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal length in quantum space and integrations of the line element in Noncommutative Geometry (1106.0261v3)

Published 1 Jun 2011 in math-ph, gr-qc, hep-th, and math.MP

Abstract: We question the emergence of a minimal length in quantum spacetime, comparing two notions that appeared at various points in the literature: on the one side, the quantum length as the spectrum of an operator L in the Doplicher Fredenhagen Roberts (DFR) quantum spacetime, as well as in the canonical noncommutative spacetime; on the other side, Connes' spectral distance in noncommutative geometry. Although on the Euclidean space the two notions merge into the one of geodesic distance, they yield distinct results in the noncommutative framework. In particular on the Moyal plane, the quantum length is bounded above from zero while the spectral distance can take any real positive value, including infinity. We show how to solve this discrepancy by doubling the spectral triple. This leads us to introduce a modified quantum length d'_L, which coincides exactly with the spectral distance d_D on the set of states of optimal localization. On the set of eigenstates of the quantum harmonic oscillator - together with their translations - d'_L and d_D coincide asymptotically, both in the high energy and large translation limits. At small energy, we interpret the discrepancy between d'_L and d_D as two distinct ways of integrating the line element on a quantum space. This leads us to propose an equation for a geodesic on the Moyal plane.

Summary

We haven't generated a summary for this paper yet.