Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient sampling of high-dimensional Gaussian fields: the non-stationary / non-sparse case (1105.5887v1)

Published 30 May 2011 in stat.CO, cs.LG, and stat.AP

Abstract: This paper is devoted to the problem of sampling Gaussian fields in high dimension. Solutions exist for two specific structures of inverse covariance : sparse and circulant. The proposed approach is valid in a more general case and especially as it emerges in inverse problems. It relies on a perturbation-optimization principle: adequate stochastic perturbation of a criterion and optimization of the perturbed criterion. It is shown that the criterion minimizer is a sample of the target density. The motivation in inverse problems is related to general (non-convolutive) linear observation models and their resolution in a Bayesian framework implemented through sampling algorithms when existing samplers are not feasible. It finds a direct application in myopic and/or unsupervised inversion as well as in some non-Gaussian inversion. An illustration focused on hyperparameter estimation for super-resolution problems assesses the effectiveness of the proposed approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.