Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Behavior of Graph Laplacians on Manifolds with Boundary (1105.3931v1)

Published 19 May 2011 in cs.LG, math.NA, and stat.ML

Abstract: In manifold learning, algorithms based on graph Laplacians constructed from data have received considerable attention both in practical applications and theoretical analysis. In particular, the convergence of graph Laplacians obtained from sampled data to certain continuous operators has become an active research topic recently. Most of the existing work has been done under the assumption that the data is sampled from a manifold without boundary or that the functions of interests are evaluated at a point away from the boundary. However, the question of boundary behavior is of considerable practical and theoretical interest. In this paper we provide an analysis of the behavior of graph Laplacians at a point near or on the boundary, discuss their convergence rates and their implications and provide some numerical results. It turns out that while points near the boundary occupy only a small part of the total volume of a manifold, the behavior of graph Laplacian there has different scaling properties from its behavior elsewhere on the manifold, with global effects on the whole manifold, an observation with potentially important implications for the general problem of learning on manifolds.

Citations (1)

Summary

We haven't generated a summary for this paper yet.