Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlling Complex Networks with Compensatory Perturbations (1105.3726v1)

Published 18 May 2011 in q-bio.MN, cond-mat.dis-nn, cs.SI, nlin.CD, and physics.soc-ph

Abstract: The response of complex networks to perturbations is of utmost importance in areas as diverse as ecosystem management, emergency response, and cell reprogramming. A fundamental property of networks is that the perturbation of one node can affect other nodes, in a process that may cause the entire or substantial part of the system to change behavior and possibly collapse. Recent research in metabolic and food-web networks has demonstrated the concept that network damage caused by external perturbations can often be mitigated or reversed by the application of compensatory perturbations. Compensatory perturbations are constrained to be physically admissible and amenable to implementation on the network. However, the systematic identification of compensatory perturbations that conform to these constraints remains an open problem. Here, we present a method to construct compensatory perturbations that can control the fate of general networks under such constraints. Our approach accounts for the full nonlinear behavior of real complex networks and can bring the system to a desirable target state even when this state is not directly accessible. Applications to genetic networks show that compensatory perturbations are effective even when limited to a small fraction of all nodes in the network and that they are far more effective when limited to the highest-degree nodes. The approach is conceptually simple and computationally efficient, making it suitable for the rescue, control, and reprogramming of large complex networks in various domains.

Citations (13)

Summary

We haven't generated a summary for this paper yet.