Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Similar Graphs From Spherical Features (1105.2965v2)

Published 15 May 2011 in cs.SI, physics.soc-ph, stat.AP, stat.ME, and stat.ML

Abstract: We propose a novel model for generating graphs similar to a given example graph. Unlike standard approaches that compute features of graphs in Euclidean space, our approach obtains features on a surface of a hypersphere. We then utilize a von Mises-Fisher distribution, an exponential family distribution on the surface of a hypersphere, to define a model over possible feature values. While our approach bears similarity to a popular exponential random graph model (ERGM), unlike ERGMs, it does not suffer from degeneracy, a situation when a significant probability mass is placed on unrealistic graphs. We propose a parameter estimation approach for our model, and a procedure for drawing samples from the distribution. We evaluate the performance of our approach both on the small domain of all 8-node graphs as well as larger real-world social networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.