Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Optimization under Limited Information (1105.2176v1)

Published 11 May 2011 in math.OC, cs.IT, cs.LG, cs.SY, and math.IT

Abstract: In many real world problems, optimization decisions have to be made with limited information. The decision maker may have no a priori or posteriori data about the often nonconvex objective function except from on a limited number of points that are obtained over time through costly observations. This paper presents an optimization framework that takes into account the information collection (observation), estimation (regression), and optimization (maximization) aspects in a holistic and structured manner. Explicitly quantifying the information acquired at each optimization step using the entropy measure from information theory, the (nonconvex) objective function to be optimized (maximized) is modeled and estimated by adopting a Bayesian approach and using Gaussian processes as a state-of-the-art regression method. The resulting iterative scheme allows the decision maker to solve the problem by expressing preferences for each aspect quantitatively and concurrently.

Citations (23)

Summary

We haven't generated a summary for this paper yet.