2000 character limit reached
Adaptively Learning the Crowd Kernel (1105.1033v2)
Published 5 May 2011 in cs.LG
Abstract: We introduce an algorithm that, given n objects, learns a similarity matrix over all n2 pairs, from crowdsourced data alone. The algorithm samples responses to adaptively chosen triplet-based relative-similarity queries. Each query has the form "is object 'a' more similar to 'b' or to 'c'?" and is chosen to be maximally informative given the preceding responses. The output is an embedding of the objects into Euclidean space (like MDS); we refer to this as the "crowd kernel." SVMs reveal that the crowd kernel captures prominent and subtle features across a number of domains, such as "is striped" among neckties and "vowel vs. consonant" among letters.