2000 character limit reached
Results on the intersection graphs of subspaces of a vector space (1105.0803v1)
Published 4 May 2011 in math.CO
Abstract: For a vector space $V$ the \emph{intersection graph of subspaces} of $V$, denoted by $G(V)$, is the graph whose vertices are in a one-to-one correspondence with proper nontrivial subspaces of $V$ and two distinct vertices are adjacent if and only if the corresponding subspaces of $V$ have a nontrivial (nonzero) intersection. In this paper, we study the clique number, the chromatic number, the domination number and the independence number of the intersection graphs of subspaces of a vector space.