Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Price's Law on Nonstationary Spacetimes (1104.5437v2)

Published 28 Apr 2011 in math.AP

Abstract: In this article we study the pointwise decay properties of solutions to the wave equation on a class of nonstationary asymptotically flat backgrounds in three space dimensions. Under the assumption that uniform energy bounds and a weak form of local energy decay hold forward in time we establish a $t{-3}$ local uniform decay rate (Price's law \cite{MR0376103}) for linear waves. As a corollary, we also prove Price's law for certain small perturbations of the Kerr metric. This result was previously established by the second author in \cite{Tat} on stationary backgrounds. The present work was motivated by the problem of nonlinear stability of the Kerr/Schwarzschild solutions for the vacuum Einstein equations, which seems to require a more robust approach to proving linear decay estimates.

Summary

We haven't generated a summary for this paper yet.