Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Commitment to Tasks with Off-Policy Hierarchical Reinforcement Learning (1104.5059v1)

Published 27 Apr 2011 in cs.LG

Abstract: In experimenting with off-policy temporal difference (TD) methods in hierarchical reinforcement learning (HRL) systems, we have observed unwanted on-policy learning under reproducible conditions. Here we present modifications to several TD methods that prevent unintentional on-policy learning from occurring. These modifications create a tension between exploration and learning. Traditional TD methods require commitment to finishing subtasks without exploration in order to update Q-values for early actions with high probability. One-step intra-option learning and temporal second difference traces (TSDT) do not suffer from this limitation. We demonstrate that our HRL system is efficient without commitment to completion of subtasks in a cliff-walking domain, contrary to a widespread claim in the literature that it is critical for efficiency of learning. Furthermore, decreasing commitment as exploration progresses is shown to improve both online performance and the resultant policy in the taxicab domain, opening a new avenue for research into when it is more beneficial to continue with the current subtask or to replan.

Citations (2)

Summary

We haven't generated a summary for this paper yet.