Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Ratings and rankings: Voodoo or Science? (1104.3009v2)

Published 15 Apr 2011 in stat.AP

Abstract: Composite indicators aggregate a set of variables using weights which are understood to reflect the variables' importance in the index. In this paper we propose to measure the importance of a given variable within existing composite indicators via Karl Pearson's correlation ratio'; we call this measuremain effect'. Because socio-economic variables are heteroskedastic and correlated, (relative) nominal weights are hardly ever found to match (relative) main effects; we propose to summarize their discrepancy with a divergence measure. We further discuss to what extent the mapping from nominal weights to main effects can be inverted. This analysis is applied to five composite indicators, including the Human Development Index and two popular league tables of university performance. It is found that in many cases the declared importance of single indicators and their main effect are very different, and that the data correlation structure often prevents developers from obtaining the stated importance, even when modifying the nominal weights in the set of nonnegative numbers with unit sum.

Summary

We haven't generated a summary for this paper yet.