Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy and Mean-Payoff Parity Markov Decision Processes (1104.2909v1)

Published 14 Apr 2011 in cs.GT

Abstract: We consider Markov Decision Processes (MDPs) with mean-payoff parity and energy parity objectives. In system design, the parity objective is used to encode \omega-regular specifications, and the mean-payoff and energy objectives can be used to model quantitative resource constraints. The energy condition requires that the resource level never drops below 0, and the mean-payoff condition requires that the limit-average value of the resource consumption is within a threshold. While these two (energy and mean-payoff) classical conditions are equivalent for two-player games, we show that they differ for MDPs. We show that the problem of deciding whether a state is almost-sure winning (i.e., winning with probability 1) in energy parity MDPs is in NP \cap coNP, while for mean-payoff parity MDPs, the problem is solvable in polynomial time, improving a recent PSPACE bound.

Citations (60)

Summary

We haven't generated a summary for this paper yet.