Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensitivity analysis of one parameter semigroups exemplified by the Wright--Fisher diffusion (1104.1876v2)

Published 11 Apr 2011 in math.FA, math.AP, and math.PR

Abstract: We consider the sensitivity, with respect to a parameter \theta, of parametric families of operators A_{\theta}, vectors \pi_{\theta} corresponding to the adjoints A_{\theta}{*} of A_{\theta} via A_{\theta}{*}\pi_{\theta}=0 and one parameter semigroups t\mapsto e{tA_{\theta}}. We display formulas relating weak differentiability of \theta\mapsto \pi_{\theta} (at \theta=0) to weak differentiability of \theta\mapsto A_{\theta}{*}\pi_{0} and [e{A_{\theta}t}]{*}\pi_{0}. We give two applications: The first one concerns the sensitivity of the Ornstein--Uhlenbeck process with respect to its location parameter. The second one provides new insights regarding the Wright--Fisher diffusion for small mutation parameter.

Summary

We haven't generated a summary for this paper yet.