Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Root Refinement for Real Polynomials (1104.1362v3)

Published 7 Apr 2011 in cs.SC

Abstract: We consider the problem of approximating all real roots of a square-free polynomial $f$. Given isolating intervals, our algorithm refines each of them to a width of $2{-L}$ or less, that is, each of the roots is approximated to $L$ bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only considering finite approximations of the polynomial coefficients and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating $f$, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of the degree of the polynomial, the size and the separation of the roots, that is, parameters exclusively related to the geometric location of the roots. Our bound is near optimal and significantly improves previous work on integer polynomials. Furthermore, it essentially matches the best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms. We also investigate the practical behavior of the algorithm and demonstrate how closely the practical performance matches our asymptotic bounds.

Citations (4)

Summary

We haven't generated a summary for this paper yet.