Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated Dual Descent for Network Optimization (1104.1157v1)

Published 6 Apr 2011 in math.OC and cs.SY

Abstract: Dual descent methods are commonly used to solve network optimization problems because their implementation can be distributed through the network. However, their convergence rates are typically very slow. This paper introduces a family of dual descent algorithms that use approximate Newton directions to accelerate the convergence rate of conventional dual descent. These approximate directions can be computed using local information exchanges thereby retaining the benefits of distributed implementations. The approximate Newton directions are obtained through matrix splitting techniques and sparse Taylor approximations of the inverse Hessian.We show that, similarly to conventional Newton methods, the proposed algorithm exhibits superlinear convergence within a neighborhood of the optimal value. Numerical analysis corroborates that convergence times are between one to two orders of magnitude faster than existing distributed optimization methods. A connection with recent developments that use consensus iterations to compute approximate Newton directions is also presented.

Citations (50)

Summary

We haven't generated a summary for this paper yet.