Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random-data Cauchy Problem for the Periodic Navier-Stokes Equations with Initial Data in Negative-order Sobolev Spaces (1103.6170v1)

Published 31 Mar 2011 in math.AP and math.DS

Abstract: In this paper we study existence of solutions of the initial-boundary value problems of the Navier-Stokes equations with a periodic boundary value condition for initial data in the Sobolev spaces $\mathcal{H}{s}(\mathbb{T}N)$ with a negative order $-1<s<0$, where $N=2, 3$. By using the randomization approach of N. Burq and N. Tzvetkov, we prove that for almost all $\omega\in\Omega$, where $\Omega$ is the sample space of a probability space $(\Omega,\mathcal{A},p)$, for the randomized initial data $\vec{f}\omega\in\mathcal{H}_{\sigma}{s}(\mathbb{T}N)$ with $-1<s<0$, such a problem has a unique local solution.

Summary

We haven't generated a summary for this paper yet.