Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Weyl modules for equivariant map algebras with free abelian group actions (1103.5766v2)

Published 29 Mar 2011 in math.RT, math.QA, and math.RA

Abstract: Suppose a finite group acts on a scheme X and a finite-dimensional Lie algebra g. The associated equivariant map algebra is the Lie algebra of equivariant regular maps from X to g. Examples include generalized current algebras and (twisted) multiloop algebras. Local Weyl modules play an important role in the theory of finite-dimensional representations of loop algebras and quantum affine algebras. In the current paper, we extend the definition of local Weyl modules (previously defined only for generalized current algebras and twisted loop algebras) to the setting of equivariant map algebras where g is semisimple, X is affine of finite type, and the group is abelian and acts freely on X. We do so by defining twisting and untwisting functors, which are isomorphisms between certain categories of representations of equivariant map algebras and their untwisted analogues. We also show that other properties of local Weyl modules (e.g. their characterization by homological properties and a tensor product property) extend to the more general setting considered in the current paper.

Summary

We haven't generated a summary for this paper yet.