Spatial Brownian motion in renormalized Poisson potential: A critical case (1103.5717v1)
Abstract: Let $B_s$ be a three dimensional Brownian motion and $\omega(dx)$ be an independent Poisson field on $\mathbb{R}3$. It is proved that for any $t>0$, conditionally on $\omega(\cdot)$, \label{} \mathbb{E}0 \exp{\theta \int_0t \bar{V}(B_s) ds} \ < \infty \ a.s. & \text{if} \theta< 1/16, \medskip = \infty \ a.s. & \text{if} \theta> 1/16, where $\bar{V}(x)$ is the renormalized Poisson potential $$ \bar{V}(x)=\int{\mathbb{R}3} \frac{1}{| x-y |2} \big[\omega(dy)-dy\big]. $$ Then the long term behavior of the quenched exponential moment \eqref{} is determined for $\theta \in (0, 1/16)$ in the form of integral tests. This paper exhibits and builds upon the interrelation between the exponential moment \eqref{*} and the celebrated Hardy's inequality $$ \int_{\mathbb{R}3} \frac{f2(x)}{| x |2} dx \le 4 |\nabla f|_22, 2in f \in W{1,2}(\mathbb{R}3). $$