Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Privacy: on the trade-off between Utility and Information Leakage (1103.5188v3)

Published 27 Mar 2011 in cs.CR, cs.DB, cs.IT, and math.IT

Abstract: Differential privacy is a notion of privacy that has become very popular in the database community. Roughly, the idea is that a randomized query mechanism provides sufficient privacy protection if the ratio between the probabilities that two adjacent datasets give the same answer is bound by eepsilon. In the field of information flow there is a similar concern for controlling information leakage, i.e. limiting the possibility of inferring the secret information from the observables. In recent years, researchers have proposed to quantify the leakage in terms of R\'enyi min mutual information, a notion strictly related to the Bayes risk. In this paper, we show how to model the query system in terms of an information-theoretic channel, and we compare the notion of differential privacy with that of mutual information. We show that differential privacy implies a bound on the mutual information (but not vice-versa). Furthermore, we show that our bound is tight. Then, we consider the utility of the randomization mechanism, which represents how close the randomized answers are, in average, to the real ones. We show that the notion of differential privacy implies a bound on utility, also tight, and we propose a method that under certain conditions builds an optimal randomization mechanism, i.e. a mechanism which provides the best utility while guaranteeing differential privacy.

Citations (145)

Summary

We haven't generated a summary for this paper yet.