Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Pseudo-distances on symplectomorphism groups and applications to flux theory (1103.5144v2)

Published 26 Mar 2011 in math.SG

Abstract: Starting from a given norm on the vector space of exact 1-forms of a compact symplectic manifold, we produce pseudo-distances on its symplectomorphism group by generalizing an idea due to Banyaga. We prove that in some cases (which include Banyaga's construction), their restriction to the Hamiltonian diffeomorphism group is equivalent to the distance induced by the initial norm on exact 1-forms. We also define genuine "distances to the Hamiltonian diffeomorphism group" which we use to derive several consequences, mainly in terms of flux groups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube