Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 454 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Quantitative version of the Kipnis-Varadhan theorem and Monte Carlo approximation of homogenized coefficients (1103.4591v2)

Published 23 Mar 2011 in math.PR and math.NA

Abstract: This article is devoted to the analysis of a Monte Carlo method to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. We consider the case of independent and identically distributed coefficients, and adopt the point of view of the random walk in a random environment. Given some final time t>0, a natural approximation of the homogenized coefficients is given by the empirical average of the final squared positions re-scaled by t of n independent random walks in n independent environments. Relying on a quantitative version of the Kipnis-Varadhan theorem combined with estimates of spectral exponents obtained by an original combination of PDE arguments and spectral theory, we first give a sharp estimate of the error between the homogenized coefficients and the expectation of the re-scaled final position of the random walk in terms of t. We then complete the error analysis by quantifying the fluctuations of the empirical average in terms of n and t, and prove a large-deviation estimate, as well as a central limit theorem. Our estimates are optimal, up to a logarithmic correction in dimension 2.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.