Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Stretch Factor of the Delaunay Triangulation Is Less Than 1.998 (1103.4361v2)

Published 22 Mar 2011 in cs.CG

Abstract: Let $S$ be a finite set of points in the Euclidean plane. Let $D$ be a Delaunay triangulation of $S$. The {\em stretch factor} (also known as {\em dilation} or {\em spanning ratio}) of $D$ is the maximum ratio, among all points $p$ and $q$ in $S$, of the shortest path distance from $p$ to $q$ in $D$ over the Euclidean distance $||pq||$. Proving a tight bound on the stretch factor of the Delaunay triangulation has been a long standing open problem in computational geometry. In this paper we prove that the stretch factor of the Delaunay triangulation of a set of points in the plane is less than $\rho = 1.998$, improving the previous best upper bound of 2.42 by Keil and Gutwin (1989). Our bound 1.998 is better than the current upper bound of 2.33 for the special case when the point set is in convex position by Cui, Kanj and Xia (2009). This upper bound breaks the barrier 2, which is significant because previously no family of plane graphs was known to have a stretch factor guaranteed to be less than 2 on any set of points.

Citations (82)

Summary

We haven't generated a summary for this paper yet.