Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Approximating Probability Densities by Iterated Laplace Approximations (1103.3508v1)

Published 17 Mar 2011 in stat.CO

Abstract: The Laplace approximation is an old, but frequently used method to approximate integrals for Bayesian calculations. In this paper we develop an extension of the Laplace approximation, by applying it iteratively to the residual, i.e., the difference between the current approximation and the true function. The final approximation is thus a linear combination of multivariate normal densities, where the coefficients are chosen to achieve a good fit to the target distribution. We illustrate on real and artificial examples that the proposed procedure is a computationally efficient alternative to current approaches for approximation of multivariate probability densities. The R-package iterLap implementing the methods described in this article is available from the CRAN servers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.