Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling and entropy in p-median facility location along a line (1103.3301v2)

Published 16 Mar 2011 in physics.soc-ph, cond-mat.stat-mech, cs.SI, and physics.comp-ph

Abstract: The p-median problem is a common model for optimal facility location. The task is to place p facilities (e.g., warehouses or schools) in a heterogeneously populated space such that the average distance from a person's home to the nearest facility is minimized. Here we study the special case where the population lives along a line (e.g., a road or a river). If facilities are optimally placed, the length of the line segment served by a facility is inversely proportional to the square root of the population density. This scaling law is derived analytically and confirmed for concrete numerical examples of three US Interstate highways and the Mississippi River. If facility locations are permitted to deviate from the optimum, the number of possible solutions increases dramatically. Using Monte Carlo simulations, we compute how scaling is affected by an increase in the average distance to the nearest facility. We find that the scaling exponents change and are most sensitive near the optimum facility distribution.

Citations (7)

Summary

We haven't generated a summary for this paper yet.